梦里风林
  • Introduction
  • Android
    • activity
      • Activity四种启动模式
      • Intent Flag
      • 多task的应用
      • Task和回退栈
    • sqlite
      • 【源码】CursorWindow读DB
      • Sqlite在Android上的一个Bug
    • Chromium
    • ListView读取DB数据最佳实践
    • Android Project结构
    • 一个由Proguard与FastJson引起的血案
    • 琐碎的一些tips
  • Computer Vision
    • 特征提取
    • 三维视觉
    • 计算机视觉常用工具
    • 浅谈深度学习数据集设计
    • 随笔
  • Machine Learning
    • 技巧
      • FaceBook: 1 hour training ImageNet
      • L2 Norm与L2 normalize
    • 实践
      • Pytorch实验代码的亿些小细节
    • 工具
      • Tensorflow学习笔记
      • MXNet踩坑手记
      • PyTorch踩坑手记
      • PyTorch模型剪枝
      • Keras踩坑手记
      • mscnn
      • Matlab
        • Matlab Remote IPC自动化数据处理
    • Papers
      • Classification
      • Re-identification
        • CVPR2018:TFusion完全解读
        • ECCV2018:TAUDL
        • CVPR2018:Graph+reid
        • Person Re-identification
        • CVPR2016 Re-id
        • Camera topology and Person Re-id
        • Deep transfer learning Person Re-id
        • Evaluate
      • Object Detection
        • 读论文系列·干货满满的RCNN
        • 读论文系列·SPP-net
        • 读论文系列·Fast RCNN
        • 读论文系列·Faster RCNN
        • 读论文系列·YOLO
        • 读论文系列·SSD
        • 读论文系列·YOLOv2 & YOLOv3
        • 读论文系列·detection其他文章推荐
      • Depth
      • 3D vision
        • 数据集相关
        • 光流相关
      • Hashing
        • CVPR2018: SSAH
      • 大杂烩
        • CNCC2017 琐记
        • ECCV 2016 Hydra CCNN
        • CNCC2017深度学习与跨媒体智能
        • MLA2016笔记
    • 《机器学习》(周志华)读书笔记
      • 西瓜书概念整理
        • 绪论
        • 模型评估与选择
        • 线性模型
        • 决策树
        • 神经网络
        • 支持向量机
        • 贝叶斯分类器
        • 集成学习
        • 聚类
        • 降维与度量学习
        • 特征选择与稀疏学习
        • 计算学习理论
        • 半监督学习
        • 概率图模型
        • 规则学习
        • 强化学习
        • 附录
  • Java
    • java web
      • Servlet部署
      • 琐碎的tips
    • JNI
    • Note
    • Effective Java笔记
  • 后端开发
    • 架构设计
    • 数据库
    • java web
      • Servlet部署
      • 琐碎的tips
    • Spring boot
    • django
    • 分布式
  • Linux && Hardware
    • Ubuntu安装与初始配置
    • 树莓派相关
      • 树莓派3B+无线网卡监听模式
      • TP-LINK TL-WR703N v1.7 openwrt flashing
  • Python
    • django
    • 原生模块
    • 设计模式
    • 可视化
    • 常用库踩坑指南
  • web前端
    • header div固定,content div填充父容器
    • json接口资源
  • UI
  • kit
    • vim
    • git/github
      • 刷爆github小绿点
    • Markdown/gitbook
      • 琐碎知识点
      • gitbook添加disqus作为评论
      • 导出chrome书签为Markdown
      • Markdown here && 微信公众号
    • LaTex
      • LaTex琐记
    • 科学上网
    • 虚拟机
  • thinking-in-program
    • 怎样打日志
  • 我的收藏
  • 琐记
    • 论文心得
    • 深圳买房攻略
  • 赞赏支持
由 GitBook 提供支持
在本页
  • Introduction
  • RPN
  • Proposal layer
  • Fast RCNN
  • 迭代训练
  • SUMMARY

这有帮助吗?

  1. Machine Learning
  2. Papers
  3. Object Detection

读论文系列·Faster RCNN

上一页读论文系列·Fast RCNN下一页读论文系列·YOLO

最后更新于3年前

这有帮助吗?

转载请注明作者:

Faster RCNN在Fast RCNN上更进一步,将Region Proposal也用神经网络来做,如果说Fast RCNN的最大贡献是ROI pooling layer和Multi task,那么RPN(Region Proposal Networks)就是Faster RCNN的最大亮点了。使用RPN产生的proposals比selective search要少很多(300vs2000),因此也一定程度上减少了后面detection的计算量。

Introduction

Fast RCNN之后,detection的计算瓶颈就卡在了Region Proposal上。一个重要原因就是,Region Proposal是用CPU算的,但是直接将其用GPU实现一遍也有问题,许多提取规则其实是可以重用的,因此有必要找一种能够共享算力的GPU版Region Proposal。

Faster RCNN则是专门训练了一个卷积神经网络来回归bounding box,从而代替region proposal。这个网络完全由卷积操作实现,并且引入anchor以应对对象形状尺寸各异的问题,测试速度与Fast RCNN相比速度极快。

这个网络叫做region proposal layer.

RPN

训练数据就是图片和bounding box

  • 输入任意尺寸的图片,缩放到1000×600

  • 输入到一个基础卷积神经网络,比如ZF或者VGG,以ZF为例,得到一个51×39的feature map

  • 用一个小的网络在feature map上滑窗,算每个3x3窗口的feature,输出一个长度为256的向量,这个操作很自然就是用3×3卷积来实现,于是可以得到一个51×39×256的feature map

  • 每个256向量跟feature map上一个3×3窗口对应,也跟800×600的原图上9个区域相对应,具体讲一下这个9个区域:

    • 卷积后feature map上的每个3x3的区域对应原图上一个比较大的感受野,用ZF做前面的卷积层,感受野为171×171,用VGG感受野为228×228

    • 我们想用feature map来判断它的感受野是否是前景,从而将感受野作为proposal,但是对象并不总是正方形的,于是我们需要对感受野做一个替换,得到多种形状的proposal

    • 我们让每个3x3的区域(图中橙色方格)和原图上九个区域相对应,这九个区域的中心(灰色方格)就是感受野的中心

    • 九个区域有九种尺寸分别是

    128x128 128x64 64x128

    256x256 256x128 128x256

    512x512 512x256 256x512

    • 这九个区域我们也成为9个anchor,或者9个reference box

    • 如此,每个特征就能和原图上形状和尺寸各异的区域对应起来了

  • 回到刚刚的256向量,将这个向量输入一个FC,得到2x9个输出,代表9个anchor为前景还是背景的概率

    • 学习用的标签设置:如果anchor与真实bounding box重叠率大于0.7,就当做是前景,如果小于0.3,就当做背景

  • 将256向量输入另一个FC,得到4x9个输出,代表9个anchor的修正后的位置信息(x,y,w,h)

    • 学习用的标签就是真实的bounding box,用的还是之s前Faster RCNN的bounding box regression

  • 于是我们会得到图片上51x39x9≈20K个anchor为前景的概率,以及修正后的位置

上面这个过程可以完全独立地训练,得到一个很好的Region Proposal Network

理论上我们可以用上面这个流程去训练RPN,但训练RPN的时候,一个batch会直接跑20K个anchor开销太大了。

  • 因此每个batch是采一张图里的256个anchor来训练全连接层和卷积层;

  • 这256个anchor里正负样本比例为1:1,正样本128个,负样本128个,

  • 如果正样本不足128个,用负样本填充,这也意味着并非所有的背景anchor都会拿来训练RPN,因为前景的anchor会远少于背景的anchor,丢掉一些背景anchor才能保证样本平衡,丢背景anchor的时候是以slide window为单位丢的,下面会说明。

  • 具体实现上,先算所有anchor,再算所有anchor与bounding box的重叠率,按重叠率区分正负样本,然后选择batch中的256个anchor,参与训练。同一张图会多次参与训练,直到图中的正anchor用完。

因此最终的一个mini batch的训练损失函数为:

  • pip_{i}pi​是一个batch中的多个anchor属于前景/后景的预测概率向量,tit_{i}ti​是一个batch中正anchor对应的bounding box位置向量

  • LclsL_{cls}Lcls​是softmax二分类损失

  • LregL_{reg}Lreg​跟Fast RCNN中的bounding box regression loss一样,乘一个pi∗p_{i}*pi​∗ ,意味着只有前景计算bounding box regression loss

  • 论文中说NclsN_{cls}Ncls​为256,也就是mini-batch size,NregN_{reg}Nreg​约为256 * 9=2304(论文中说约等于2400),这意味着一对p对应9个t,这种对应关系也体现在全连接层的输出个数上,由于两个task输出数量差别比较大,所以要做一下归一化。

但这就意味着loss中的mini-batch size是以3x3的slide window为单位的,因为只有slide window和anchor的个数才有这种1:9的关系,而挑选训练样本讲的mini-batch size却是以anchor为单位的,所以我猜实际操作是这样的:

  • 先选256个anchor,

  • 然后找它们对应的256个slide window,

  • 然后再算这256个slide window对应的256×9个anchor的loss,每个slide window对应一个256特征,有一个LclsL_{cls}Lcls​,同时对应9个anchor,有9个LregL_{reg}Lreg​

论文这里讲得超级混乱,可以感受下:

Proposal layer

其实这也可以算是RPN的一部分,不过这部分不需要训练,所以单独拉出来讲

  • 接下来我们会进入一个proposal layer,根据前面得到的这些信息,挑选region给后面的fast rcnn训练

    • 图片输入RPN后,我们手头的信息:anchor,anchor score,anchor location to fix

    • 用全连接层的位置修正结果修正anchor位置

    • 将修正后的anchor按照前景概率从高到底排序,取前6000个

    • 边缘的anchor可能超出原图的范围,将严重超出边缘的anchor过滤掉

  • 对anchor做非极大抑制,跟RCNN一样的操作

  • 再次将剩下的anchor按照anchor score从高到低排序(仍然可能有背景anchor的),取前300个作为proposals输出,如果不足300个就…也没啥关系,比如只有100个就100个来用,其实不足300个的情况很少的,你想Selective Search都有2000个。

Fast RCNN

接下来就是按照Fast RCNN的模式来训练了,我们可以为每张图前向传播从proposal_layer出来得到最多300个proposals,然后

  • 取一张图的128个proposal作为样本(有正有负),一张图可以取多次,直到proposal用完

  • 喂给Fast RCNN做分类和bounding box回归,这里跟RPN很像,但又有所不同,

    • BB regressor:拟合proposal和bounding box,而非拟合anchor和bounding box

    • Classifier:Object多分类,而非前景背景二分类

迭代训练

RPN和Fast RCNN其实是很像的,因此可以一定程度上共享初始权重,实际训练顺序如下(MATLAB版): 1. 先用ImageNet pretrain ZF或VGG 2. 训练RPN 3. 用RPN得到的proposal去训练Fast RCNN 4. 用Fast RCNN训练得到的网络去初始化RPN 5. 冻结RPN与Fast RCNN共享的卷积层,Fine tune RPN 6. 冻结RPN与Fast RCNN共享的卷积层,Fine tune Fast RCNN

论文中还简单讲了一下另外两种方法:

  • 将整个网络合起来一块训练,而不分步,但由于一开始训练时RPN还不稳定,所以训练Fast RCNN用的proposal是固定的anchor,最后效果差不多,训练速度也快。

  • 整个网络合起来一起训练,不分步,训练Fast RCNN用的proposals是RPN修正后的anchor,但这种动态的proposal数量不好处理,用的是一种RoI warping layer来解决,这又是另一篇论文的东西了。

SUMMARY

网络结构和训练过程都介绍完了,实验效果也是依样画葫芦,就不再介绍了,整体来说,Faster RCNN这篇论文写得很乱,很多重要的细节都要去看代码才能知道是怎么回事,得亏是效果好才能中NIPS。。

两个FC在实现的时候是分别用两个1x1卷积实现的 以橙色为例,256向量和W1矩阵相乘,得到长度为18的向量,这样的操作在51x39个feature都要做一遍,实现起来就很自然变成了用一个1x1的卷积核在feature map上做卷积啦,这样也暗含了一个假设,不同位置的slide window对于anchor的偏好是相同的,是一个参数数量与精度的权衡问题。

其中,

梦里茶
FC