绪论

第一章 绪论

  • Page2: 标记(label)

    示例结果的信息,例如“好瓜”,称为标记

  • Page2: 假设(269)(hypothesis)

    学得模型对应了数据的某种潜在的规律,因此亦称假设

  • Page2: 示例(instance)

    数据集中的每条记录是关于某个事件或对象的描述,称为一个“示例”或“样本”

  • Page2: 属性(attribute)

    反映事务或对象在某方面的表现或性质的事项,如“色泽”,称为属性或特征

  • Page2: 属性空间(attribute space)

    属性长成的空间称为属性空间,样本空间,或输入空间

  • Page2: 数据集(data set)

    数据记录的集合称为一个数据集

  • Page2: 特征(247)(feature)

    同属性

  • Page2: 学习(learning)

    从数据中学得模型的过程称为学习或训练

  • Page2: 学习器(learner)

    学习过程就是为了找出或逼近真相,有时将模型称作学习器

  • Page2: 训练(training)

    同学习

  • Page2: 训练集(training data)

    训练过程中使用的数据称为“训练集”,其中每个样本称为一个“训练样本”,训练样本组成的集合称为训练集

  • Page2: 训练样本(training sample)

    见训练集

  • Page2: 样本(sample)

    同示例

  • Page2: 样本空间(sample space)

    同属性空间

  • Page2: 样例(sample)

    同示例(instance)

  • Page2: 真相(ground-truth)

    潜在规律本身称为真相或真实

  • Page3: 标记空间(label space)

    所有标记的集合称为标记空间或输出空间

  • Page3: 测试(testing)

    学得模型后,使用其进行预测的过程称为测试,被预测的样本称为测试样本

  • Page3: 测试样本(testing sample)

    见测试

  • Page3: 簇(197)(cluster)

    将训练集中的西瓜分成若干组,称为聚类,每个组称为一个簇

  • Page3: 独立同分布(267)(independent and identically distributed)

    我们获得的每个样本都是独立的从一个分布上采样获得的,即“独立同分布”

  • Page3: 多分类(multi-class classification)

    预测值涉及多个类别时,称为“多分类”

  • Page3: 二分类(binary classification)

    预测值设计两个分类的任务

  • Page3: 泛化(121,350)(generalization)

    学得模型适用于新样本的能力,称为“泛化”能力

  • Page3: 分类(classification)

    如果预测的是离散值,此类学习任务称为分类

  • Page3: 回归(regression)

    如果预测的值是连续值,此类学习任务称为回归

  • Page3: 监督学习(supervised learning)

    根据训练数据是否拥有标记信息,学习任务可以大致分为两大类:监督学习和无监督学习,分类和回归是前者的代表,聚类是后者的代表

  • Page3: 聚类(197)(clustering)

    见簇

  • Page3: 无导师学习

    同无监督学习

  • Page3: 无监督学习(197)(unsupervised learning)

    见有监督学习

  • Page3: 有导师学习

    同有监督学习

  • Page4: 概念学习(17)(concept learning)

    广义的归纳学习大体相当于从样例中学习,而狭义的归纳学习则要求从训练数据中学得概念,因此亦称为概念学习或概念形成

  • Page4: 归纳学习(11)(inductive learning)

    从样例中学习

  • Page5: 版本空间(version space)

    存在着一个与训练集一致的假设集合,称之为“版本空间”

  • Page6: 归纳偏好(inductive bias)

    机器学习算法在学习过程中对某种类型假设的偏好,称为归纳偏好

  • Page6: 偏好

    同归纳偏好

  • Page7: 奥卡姆剃刀(17)(Occam's razor)

    若有多个假设与观察一致,则选最简单的那个

  • Page10: 符号主义(363)(symbolism)

    基于逻辑表示

  • Page10: 连接主义(connectionism)

    基于神经网络

  • Page10: 人工智能

    有很多种说法。。见仁见智

  • Page11: 机械学习

    信息存储与检索

  • Page11: 类比学习

    通过观察和发现学习

  • Page11: 示教学习

    从指令中学习

  • Page12: 统计学习(139)

    如SVM,核方法

  • Page14: 数据挖掘

    从海量数据中发掘知识

  • Page16: WEKA

  • Page17: 迁移学习

    类比学习升级版