梦里风林
  • Introduction
  • Android
    • activity
      • Activity四种启动模式
      • Intent Flag
      • 多task的应用
      • Task和回退栈
    • sqlite
      • 【源码】CursorWindow读DB
      • Sqlite在Android上的一个Bug
    • Chromium
    • ListView读取DB数据最佳实践
    • Android Project结构
    • 一个由Proguard与FastJson引起的血案
    • 琐碎的一些tips
  • Computer Vision
    • 特征提取
    • 三维视觉
    • 计算机视觉常用工具
    • 浅谈深度学习数据集设计
    • 随笔
  • Machine Learning
    • 技巧
      • FaceBook: 1 hour training ImageNet
      • L2 Norm与L2 normalize
    • 实践
      • Pytorch实验代码的亿些小细节
    • 工具
      • Tensorflow学习笔记
      • MXNet踩坑手记
      • PyTorch踩坑手记
      • PyTorch模型剪枝
      • Keras踩坑手记
      • mscnn
      • Matlab
        • Matlab Remote IPC自动化数据处理
    • Papers
      • Classification
      • Re-identification
        • CVPR2018:TFusion完全解读
        • ECCV2018:TAUDL
        • CVPR2018:Graph+reid
        • Person Re-identification
        • CVPR2016 Re-id
        • Camera topology and Person Re-id
        • Deep transfer learning Person Re-id
        • Evaluate
      • Object Detection
        • 读论文系列·干货满满的RCNN
        • 读论文系列·SPP-net
        • 读论文系列·Fast RCNN
        • 读论文系列·Faster RCNN
        • 读论文系列·YOLO
        • 读论文系列·SSD
        • 读论文系列·YOLOv2 & YOLOv3
        • 读论文系列·detection其他文章推荐
      • Depth
      • 3D vision
        • 数据集相关
        • 光流相关
      • Hashing
        • CVPR2018: SSAH
      • 大杂烩
        • CNCC2017 琐记
        • ECCV 2016 Hydra CCNN
        • CNCC2017深度学习与跨媒体智能
        • MLA2016笔记
    • 《机器学习》(周志华)读书笔记
      • 西瓜书概念整理
        • 绪论
        • 模型评估与选择
        • 线性模型
        • 决策树
        • 神经网络
        • 支持向量机
        • 贝叶斯分类器
        • 集成学习
        • 聚类
        • 降维与度量学习
        • 特征选择与稀疏学习
        • 计算学习理论
        • 半监督学习
        • 概率图模型
        • 规则学习
        • 强化学习
        • 附录
  • Java
    • java web
      • Servlet部署
      • 琐碎的tips
    • JNI
    • Note
    • Effective Java笔记
  • 后端开发
    • 架构设计
    • 数据库
    • java web
      • Servlet部署
      • 琐碎的tips
    • Spring boot
    • django
    • 分布式
  • Linux && Hardware
    • Ubuntu安装与初始配置
    • 树莓派相关
      • 树莓派3B+无线网卡监听模式
      • TP-LINK TL-WR703N v1.7 openwrt flashing
  • Python
    • django
    • 原生模块
    • 设计模式
    • 可视化
    • 常用库踩坑指南
  • web前端
    • header div固定,content div填充父容器
    • json接口资源
  • UI
  • kit
    • vim
    • git/github
      • 刷爆github小绿点
    • Markdown/gitbook
      • 琐碎知识点
      • gitbook添加disqus作为评论
      • 导出chrome书签为Markdown
      • Markdown here && 微信公众号
    • LaTex
      • LaTex琐记
    • 科学上网
    • 虚拟机
  • thinking-in-program
    • 怎样打日志
  • 我的收藏
  • 琐记
    • 论文心得
    • 深圳买房攻略
  • 赞赏支持
由 GitBook 提供支持
在本页
  • Our Method
  • Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame(LSCTM-19-18)
  • Tracking Across Multiple Cameras With Disjoint Views(LSCTM-19-14)
  • A Stochastic Approach to Tracking Objects Across Multiple Cameras(LSCTM-19-10)
  • LEARNING A MULTI-CAMERA TOPOLOGY (LSCTM-19-11)
  • 总结 根据摄像头拓扑辅助Re-id,

这有帮助吗?

  1. Machine Learning
  2. Papers
  3. Re-identification

Camera topology and Person Re-id

Our Method

  • retrain the image classifier

  • deep learning model

  • 不依赖场景

Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame(LSCTM-19-18)

  • 只比较同一时刻不同空间的图片

  • 通过拼合地面来决定摄像头之间的重叠与关联

Tracking Across Multiple Cameras With Disjoint Views(LSCTM-19-14)

  • 融合space-time和appearance的概率公式做最终的预测

  • 用appearance的相似来建立关联,从而学习出space-time模型

    • 找到appearance最相近的两个object进行时空迁移概率的学习

  • 没有对图像分类器做进一步的优化

  • 场景中有多个人物时,只有图像分类器生效

  • 比较不同时间空间的图片

A Stochastic Approach to Tracking Objects Across Multiple Cameras(LSCTM-19-10)

  • 训练Markov时空模型

  • 训练是通过识别一个人携带的红色球的运动来进行的(用球产生轨迹训练集)

  • 预测时结合时空和图像分类器预测

  • 没有重新训练图像分类器

LEARNING A MULTI-CAMERA TOPOLOGY (LSCTM-19-11)

  • Detect and Track object

  • 场景中找到入口和出口

  • 建立所有入口和出口结点的迁移拓扑结构

  • Markov-train和HMM建立概率模型

  • 没有重新训练图像分类器

总结 根据摄像头拓扑辅助Re-id,

  • 在知道拓扑的情况下,可以用于对结果直接进行剪枝减少搜索空间,

  • 在不知道拓扑的情况下,需要学习拓扑,

  • 学习拓扑往往将时空模型表达为概率模型,用概率密度函数表示,常用Markov建模。

  • 学习拓扑通常需要知道轨迹之间的关联,这种关联基本上也是用图像分类器来做,具体体现为tracking等。

  • 概率模型的建模和最后辅助图像分类器预测都有许多概率的文章可以做。

上一页CVPR2016 Re-id下一页Deep transfer learning Person Re-id

最后更新于6年前

这有帮助吗?